GEPAR3D: Geometry Prior-Assisted Learning for 3D Tooth Segmentation

Abstract:

Tooth segmentation in Cone-Beam Computed Tomography (CBCT) remains challenging, especially for fine structures like root apices, which is critical for assessing root resorption in orthodontics. We introduce GEPAR3D, a novel approach that unifies instance detection and multi-class segmentation into a single step tailored to improve root segmentation. Our method integrates a Statistical Shape Model of dentition as a geometric prior, capturing anatomical context and morphological consistency without enforcing restrictive adjacency constraints. We leverage a deep watershed method, modeling each tooth as a continuous 3D energy basin encoding voxel distances to boundaries. This instance-aware representation ensures accurate segmentation of narrow, complex root apices. Trained on publicly available CBCT scans from a single center, our method is evaluated on external test sets from two in-house and two public medical centers. GEPAR3D achieves the highest overall segmentation performance, averaging a Dice Similarity Coefficient (DSC) of 95.0% (+2.8% over the second-best method) and increasing recall to 95.2% (+9.5%) across all test sets. Qualitative analyses demonstrated substantial improvements in root segmentation quality, indicating significant potential for more accurate root resorption assessment and enhanced clinical decision-making in orthodontics.

Autorzy: Tomasz Szczepański, Szymon Płotka, Michał Grzeszczyk, Arleta Adamowicz, Piotr Fudalej, Przemysław Korzeniowski, Tomasz Trzciński, Arkadiusz Sitek

See more publications

Predicting mortality and short-term outcomes of continuous kidney replacement therapies in neonates and infants

Anna Deja, Kamil Deja, Andrea Cappoli, Raffaella Labbadia, Rute Baeta Baptista, Zainab Arslan, Jun Oh, Aysun Karabay Bayazit, Dincer Yildizdas, Claus Peter Schmitt, Marcin Tkaczyk, Mirjana Cvetkovic, Mirjana Kostic, Augustina Jankauskiene, Ernestas Virsilas, Germana Longo, Enrico Vidal, Sevgi Mir, Ipek Kaplan Bulut, Andrea Pasini, Fabio Paglialonga, Giovanni Montini, Ebru Yilmaz, Liane Correia-Costa, Ana Teixeira, Franz Schaefer, Isabella Guzzo

Adapt & Align: Continual Learning with Generative Models’ Latent Space Alignment

Kamil Deja, Bartosz Cywiński, Jan Rybarczyk, Tomasz Trzciński