Adapt & Align: Continual Learning with Generative Models’ Latent Space Alignment

Abstract:

In this work, we introduce Adapt & Align, a method for continual learning of neural networks by aligning latent representations in generative models. Neural Networks suffer from abrupt loss in performance when retrained with additional training data from different distributions. At the same time, training with additional data without access to the previous examples rarely improves the model’s performance. In this work, we propose a new method that mitigates those problems by employing generative models and splitting the process of their update into two parts. In the first one, we train a local generative model using only data from a new task. In the second phase, we consolidate latent representations from the local model with a global one that encodes knowledge of all past experiences. We introduce our approach with Variational Auteoncoders and Generative Adversarial Networks. Moreover, we show how we can use those generative models as a general method for continual knowledge consolidation that can be used in downstream tasks such as classification.

Autorzy: Kamil Deja, Bartosz Cywiński, Jan Rybarczyk, Tomasz Trzciński

See more publications

Predicting mortality and short-term outcomes of continuous kidney replacement therapies in neonates and infants

Anna Deja, Kamil Deja, Andrea Cappoli, Raffaella Labbadia, Rute Baeta Baptista, Zainab Arslan, Jun Oh, Aysun Karabay Bayazit, Dincer Yildizdas, Claus Peter Schmitt, Marcin Tkaczyk, Mirjana Cvetkovic, Mirjana Kostic, Augustina Jankauskiene, Ernestas Virsilas, Germana Longo, Enrico Vidal, Sevgi Mir, Ipek Kaplan Bulut, Andrea Pasini, Fabio Paglialonga, Giovanni Montini, Ebru Yilmaz, Liane Correia-Costa, Ana Teixeira, Franz Schaefer, Isabella Guzzo

As Good as It KAN Get: High-Fidelity Audio Representation

Maciej Rut, Piotr Kawa, Przemysław Spurek, Piotr Syga