RegScore: Scoring Systems for Regression Tasks
Scoring systems are widely adopted in medical applications for their inherent simplicity and transparency, particularly for classification tasks involving tabular data. In this work, we introduce RegScore, a novel, sparse, and interpretable scoring system specifically designed for regression tasks. Unlike conventional scoring systems constrained to integer-valued coefficients, RegScore leverages beam search and k-sparse ridge regression […]
GEPAR3D: Geometry Prior-Assisted Learning for 3D Tooth Segmentation
Tooth segmentation in Cone-Beam Computed Tomography (CBCT) remains challenging, especially for fine structures like root apices, which is critical for assessing root resorption in orthodontics. We introduce GEPAR3D, a novel approach that unifies instance detection and multi-class segmentation into a single step tailored to improve root segmentation. Our method integrates a Statistical Shape Model of […]